

Learning Assistant (LA) Model and It's Impacts: Beyond pedagogical content knowledge

Practice: In disciplinary courses, <u>LAs relate to</u> <u>students</u>, care about them, help them learn and adapt as students themselves.

Practice: In disciplinary courses, <u>LAs relate to</u> <u>students</u>, care about them, help them learn and adapt as students themselves. Pedagogy: In <u>weekly</u> <u>pedagogy course</u> LAs become advocates, inclusive educators, and mentors.

Practice: In disciplinary courses, <u>LAs relate to</u> <u>students</u>, care about them, help them learn and adapt as students themselves.

Pedagogy: In <u>weekly</u> <u>pedagogy course</u> LAs become advocates, inclusive educators, and mentors.

Generalized Model of Transformation with LAs

Transformed with LAs

Generalized Model of Transformation with LAs

Traditional

Transformed with LAs

The LA program has shown a variety of impacts:

- Improved student learning outcomes (Pollock, 2009)
- Improved learning outcomes especially among students from traditionally underrepresented groups (Van Dusen & Nissen, 2020)
- Decreased failure in gateway courses (Alzen, Landgon, Otero, 2018)
- Persistence to graduation (Otero, 2015)
- Development of disciplinary Identities (Close, Conn, & Close, 2016)
- Academic and social integration among students (Top, 2019)
- Institutional change (Goertzen, Brewe, Kramer, Wells, & Jones, 2011)

The rising STAR of Texas

TEXAS STATE

Learning About STEM Student Outcomes (LASSO) Herrera, Nissen, & Van Dusen (2018)

physics, and equity: A quantitative critical race theory investigation. Phys. Rev. PER.

0

SS0

Student Learning in Chemistry

General Chemistry I: Concept Inventory Scores

All courses involved active learning, learning outcomes were significantly improved after LAs were added to support the course

Student Learning in Physics

Score on Electricity and Magnetism Conceptual Test

Pollock, S. (2009). PhysRev: ST Phys Ed. Rsrch 5, 020110, 1-8

Longitudinal Effects in Physics

Pollock, S. (2009). PhysRev: ST Phys Ed. Rsrch 5, 020110, 1-8

Franklin, S. (2018)

Franklin, S. (2018)

CU-Boulder Persistence to Degree: Does *serving as an LA* make a difference?

Spring 2014 Study

LA Sample: 173 unique LAs that have

- Worked as an LA for at least one term since Fall 2003 Spring 2014
- Started as an undergraduate by Spring 2008 (to allow time to graduate)
- · Could be matched to at least one other non-LA undergraduate

Matched non-LA Sample: 9,215 unique undergraduates that have

- Not served as an LA
- Started as an undergraduate by Spring 2008
- Matched at least one LA (duplicate matches removed)

Criteria for matching:

- ✓ Gender
- ✓ Predicted GPA +/- 0.1
- ✓ Class level during LA term
- ✓ College enrolled in as of LA term

Persistence to Degree (CU Boulder): Does *serving as an LA* make a difference?

Enrollment Status as of Spring 2014	% LAs (n = 173)	% non-LAs (n = 9215)
Left CU-Boulder	2.9%	11.3%
Still enrolled (Spring 2014)	0.0%	0.5%
Graduated within 6 years	97.1%	88.3%
Grand Total	100.0%	100.0%

Otero (2015)

Approximately 13% of undergraduates who participate in LA program go on to enroll in a teacher certification program

LAs are recruited into the Undergraduate Teacher Certification program. Notice that the other program completion rate remained constant

Slice from one year at CU Boulder

What makes the program effective?

What are LAs doing that could lead to these outcomes?

Top, L. (2019)

How LAs are used in classes: https://www.youtube.com/watch?v=Av1IH8vSIZQ&feature=emb_logo

More details on LASSO study:

https://www.dropbox.com/s/jagyqyoq87ka6ye/Data%20slides.mp4?dl=0

https://learningassistantalliance.org/

Community/Conference Assessment

Slides/Videos/Tools

Software

References

- Alzen, J. L., Langdon, L. S., & Otero, V. K. (2018). A logistic regression investigation of the relationship between the Learning Assistant model and failure rates in introductory STEM courses. International Journal of STEM Education, 5(1), 56.
- Close, E. W., Conn, J., & Close, H. G. (2016). Becoming Physics People: Development of Integrated Physics Identity through the Learning Assistant Experience. Physical Review Physics Education Research, 12(1), 010109.
- Gray, K. E., Webb, D. C., & Otero, V. K. (2016). Effects of the learning assistant model on teacher practice. Physical Review Physics Education Research, 12(2), 020126.
- Herrera, X., Nissen, J., and Van Dusen, B. (2018). Student outcomes across collaborativelearning environments. *Physics Education Research Conference Proceedings*.
- Knight, J. K., Wise, S. B., Rentsch, J., & Furtak, E. M. (2015). Cues Matter: Learning Assistants Influence Introductory Biology Student Interactions during Clicker-Question Discussions. CBE Life Sciences Education, 14(4).
- Lindsay, W.E., Avena, J. & McIntosh, B. (Accepted, 2021). Supporting Emergency Remote Teaching: Learning Assistants at the Boundary. Paper to be presented at the annual meeting of the American Educational Research Association.

- Otero, V. (2015). Nationally scaled model for leveraging Course Transformation with Physics Teacher Preparation: The Colorado Learning Assistant Model, in E. Brewe and C. Sandifer, (Eds.), Effective Practices in Preservice Teacher Education, American Physical Society and American Association of Physics Teachers, 107-116.
- Pollock, S. J. (2009). Longitudinal study of student conceptual understanding in electricity and magnetism. Physical Review Special Topics-Physics Education Research, 5(2), 020110.
 School of Education (2020).

https://www.colorado.edu/education/2020/04/13/learning-assistants-takecompassionate-leadership-online-during-difficult-times

- Sellami, N., Shaked, S., Laski, F. A., Eagan, K. M., & Sanders, E. R. (2017). Implementation of a learning assistant program improves student performance on higher-order assessments. CBE—Life Sciences Education, 16(4), ar62.
- Top, L. (2019). From Invitation to Integration: A Model for Why Learning Assistants are Valued by Members of Communities Within Institutions, unpublished dissertation, University of Colorado Boulder, paper is in review.
- Van Dusen, B. and Nissen, J. (2020). Associations between learning assistants, passing introductory physics, and equity: A quantitative critical race theory investigation, *Phys. Rev. PER*.